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Abstract
We consider a class of random graphs, called random brushes, which are
constructed by adding linear graphs of random lengths to the vertices of Z

d

viewed as a graph. We prove that for d = 2 all random brushes have spectral
dimension ds = 2. For d = 3, we have 5

2 � ds � 3, and for d � 4 we have
3 � ds � d.

PACS numbers: 02.50.Cw, 04.60.Kz, 05.40.Jc, 05.60.Cd

1. Introduction

The generic structure of random geometrical objects is of interest in many branches of physics
ranging from condensed matter physics to quantum gravity, see e.g. [1, 2]. One of the
methods used to analyze such objects is to study diffusion or random walk. Diffusion allows
us to define a notion of dimension, the spectral dimension, for random geometrical objects. In
recent years, the spectral dimension of triangulations has been studied numerically in quantum
gravity [3–7] and analytically for certain classes of random trees [8–10]. In [9] the spectral
dimension of various ensembles of random combs was calculated. In this paper we generalize
the monotonicity results of [9] which allows us to find bounds on the spectral dimensions of a
class of graphs which we call brushes and define below.

Let G be a connected, locally finite (i.e. each vertex has finitely many nearest neighbors)
rooted graph. All graphs that we consider will be assumed to have this property. Let pG(t)

be the probability that a simple random walk on G which starts at the root is back at the root
after t steps. If

pG(t) ∼ t−ds/2 (1)

as t → ∞, then we say that ds is the spectral dimension of the graph G. The existence of
ds is not guaranteed for individual graphs but its ensemble average can be shown to be well
defined in many cases [9, 10]. It is easy to see that if the spectral dimension exists then it is
independent of the starting site of the random walk.

There is another notion of a dimension for graphs and other random structures, the so-
called fractal or Hausdorff dimension dH. If V (r) is the number of vertices within a graph
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distance r from the root and

V (r) ∼ rdH (2)

as r → ∞, then dH is the Hausdorff dimension. It can be shown that

dH � ds � 2dH

dH + 1
(3)

see [11], if both dH and ds exist.
Let us view Z

d as a graph with j, k ∈ Z
d neighbors if their distance is 1 and let the origin

of Z
d be the root. It is well known that the spectral dimension of Z

d is d. Let Nl be a linear
chain of length �, i.e., the graph obtained be connecting nearest neighbors in {0, 1, . . . , �}
with a link. Let 0 be the root of N�. Similarly, let N∞ be the infinite linear chain with root
at 0. A d-brush is a graph constructed by attaching one of the graphs N� to each vertex of Z

d

by identifying the root of N� with a vertex in Z
d , � ∈ N0 ∪ {∞}, � = 0 corresponding to the

empty chain. In a brush B, we will refer to Z
d as the base and the linear chains as bristles. A

random brush is defined by letting the length of the bristles be identically and independently
distributed by a probability measure on N0 ∪ {∞}. We see that the case d = 1 corresponds to
the combs studied in [9] which were shown to have a spectral dimension in the interval

[
1, 3

2

]
.

For d > 1, we will show that the spectral dimensions of random brushes satisfy the
following:

ds = 2, if d = 2,

5
2 � ds � 3, if d = 3,

3 � ds � d, if d � 4.

(4)

Some comments are in order. We see that when d � 3, attaching the bristles to the base
serves to lower the spectral dimension since the spectral dimension of Z

d is equal to d.
This is opposite to the case of combs where the linear chains tended to increase the spectral
dimension. Intuitively this can be understood in the following way. If there is a very long
bristle somewhere, a random walk can go up it and spend a long time there before returning
to the base which it must do eventually since the bristles are recurrent. Once it returns to the
base it will go back to the root with nonzero probability. We will indeed see below that adding
a single infinite bristle to Z

d , with d � 4 will bring the spectral dimension down to 3. The
two-dimensional case is special because Z

2 is only marginally recurrent and the generating
function for p

Z
2(t) has a logarithmic singularity which is not changed by the presence of

bristles. Assuming that the spectral dimension of random brushes can be calculated by mean
field theory, we show that the full range of exponents in (4) is realized.

The paper is organized as follows. In the following section we define the generating
functions used to analyze the spectral dimension. We then establish generalized monotonicity
lemmas which are shown to imply the stated bounds on ds in section 4. Section 5 contains
a discussion of mean field theory for brushes. A final section contains a discussion of the
Hausdorff dimension of random brushes and some comments.

2. Generating functions

Let G be a graph and p1
G(t) the probability that a random walk is at the root at time t for the

first time after t = 0. We define the return generating function

QG(z) =
∞∑
t=0

pG(t)zt (5)

2
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and the first return generating function

PG(z) =
∞∑
t=0

p1
G(t)zt . (6)

The generating functions are related by

QG(z) = 1

1 − PG(z)
. (7)

If G has a spectral dimension ds then

Q
(n)
G (z) ∼

{
1 if n = ds/2 − 1

(1 − z)ds/2−1−n otherwise,
(8)

where n is the smallest non-negative integer for which Q
(n)
G (z) diverges as z → 1. Similarly,

the behavior (8) implies that the spectral dimension is ds . Here f (y) ∼ yα as y → 0 means
that for any ε > 0 there exist positive constants c1 and c2, which may depend on ε, such that

c1y
α+ε � f (y) � c2y

α−ε (9)

for y small enough. Note that f (y) ∼ 1 allows f to have a logarithmic singularity at 0.
The function PG(z) is analytic in the unit disc and |P(z)| < 1 for |z| < 1. If PG(z) → 1

as z → 1 then QG(z) clearly diverges in which case the random walk is recurrent and ds � 2.
If PG(z) �→ 1 as z → 1 then the random walk is transient and ds � 2. In the latter case, we
see that if some derivative Q(n)(z) diverges as z → 1 then Q

(n)
G (z) ∼ P

(n)
G (z) as z → 1.

If a graph has the property that every random walk which begins and ends at the root has
an even number of steps, as is the case for brushes and bristles, we have to replace pG(t) with
pG(2t) in (1) and z with z2 on the right-hand side of (8). Then it is convenient to introduce a
variable x = 1 − z2 ∈ [0, 1]. We will use the variable z for general graphs but the variable x
when dealing with brushes and bristles.

We will need the following first return generating functions for the graphs Nl and N∞ [9]:

Pl(x) = 1 − √
x

(1 +
√

x)l − (1 − √
x)l

(1 +
√

x)l + (1 − √
x)l

(10)

and

P∞(x) = 1 − √
x. (11)

Let µ be a probability measure on N0 ∪ {∞}. Let Bd be the set of all d-brushes. We
define a probability measure π on Bd by letting the measure of the set of d-brushes � which
have bristles at n1, n2, . . . , nk ∈ Z

d of length �1, �2, . . . , �k be

π(�) =
k∏

i=1

µ(li). (12)

The set Bd together with π defines a random brush ensemble. We define the averaged
generating functions

P(x) = 〈PB(x)〉π (13)

and

Q(x) = 〈QB(x)〉π , (14)

where 〈·〉π denotes expectation with respect to π . We say that a random brush has spectral
dimension ds if Q(x) obeys relation (8) (after replacing z with z2 on the right-hand side).

3
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Figure 1. An example of a graph G1 constructed from G2 and the F(i)’s.

3. Monotonicity

Here we present the monotonicity results in a slightly more general setting than is needed for
the applications below. This is both for clarity and potential applications to random graphs
different from the brushes.

Let G1 and G2 be graphs such that G1 can be constructed from G2 by attaching rooted
graphs F(i) by their roots to sites i �= r of G2. Let the roots of G1 and G2 be the same
vertex (regarding G2 as a subgraph of G1). The following result is a generalization of the
Monotonicity lemma of [9].

Lemma 1. With G1 and G2 defined as above and G1 �= G2, we have

PG1(z) � PG2(z) (15)

with equality if and only if all the F(i)’s are recurrent and z = 1.

Proof. For any graph G, we can write PG(z) as a weighted sum over all random walks ω on G
which start and end at the root without intermediate visits to the root (this condition is denoted
‘ω: FR on G’). Each walk ω has a weight

WG(ω) =
|ω|−1∏
t=0

σG(ωt )
−1, (16)

where σG(ωt ) is the order of the vertex ωt on G where the walk is located at time t and |ω| is
the number of steps in ω. Each step of a walk has a factor z associated with it so

PG(z) =
∑

ω: FR on G

WG(ω)z|ω|. (17)

Now consider a random walk ω′ on G1 which starts at the root. Let ω be the subwalk of
ω′ which only travels on G2. If we look at the walk ω at time t and location ωt , then ω can

4
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be a subwalk of many different walks ω′ which correspond to all possible excursions into the
graph F(ωt) before returning back to the walk on G2. The weight of these excursions is

∞∑
n=0

(
σF(ωt )(ωt )

σG1(ωt )
PF(ωt )(z)

)n

= 1

1 − ( σF(ωt )(ωt )

σG1 (ωt )
PF(ωt )(z)

) , (18)

where n counts the number of visits to ωt before the walk leaves ωt for another vertex
on G2 and the factor in front of PF(ωt )(z) changes the order of the root of F(ωt) to
σG1(ωt ) = σG2(ωt ) + σF(ωt )(ωt ). The weight of the first step back into G2 after all the
visits to F(ωt) is

z

σG1(ωt )
. (19)

Now replace the original weight σG2(ωt )
−1z of ω at each point ωt �= ω0 by the product of

factors (18) and (19). This newly weighted ω then accounts for every random walk on G1

which has ω as a subwalk on G2. Thus we can write

PG1(z) =
∑

ω: FR on G2

σG2(ω0)
−1z

|ω|−1∏
t=1

(
z

σG2(ωt ) + σF(ωt )(ωt )(1 − PF(ωt )(z))

)

=
∑

ω: FR on G2

KG1,G2(z;ω)WG2(ω)z|ω|, (20)

where in the last step we defined

KG1,G2(z;ω) =
|ω|−1∏
t=1

(
σG2(ωt )

σG2(ωt ) + σF(ωt )(ωt )(1 − PF(ωt )(z))

)
. (21)

Since PF(ωt )(z) � 1 with equality if and only if F(ωt) is recurrent and z = 1, it is clear that
KG1,G2(z;ω) � 1 for all z with equality if and only if all the graphs F(ωt) for a given ω on
G2 are recurrent and z = 1. Inequality (15) follows. �

Lemma 2. Let n ∈ Z
+ be such that P

(n−1)
G2

(z) is continuous on the closed interval [0, 1]. If all
the F(i)’s are recurrent then for a given z ∈]0, 1[ there exists a ξ ∈]z, 1[ such that

P
(n)
G1

(ξ) � P
(n)
G2

(ξ). (22)

Proof. We define

HG1,G2(z; n) =
∑

ω: FR on G2

KG1,G2(z;ω)WG2(ω)
dn−1

dzn−1
z|ω|, (23)

where KG1,G2 is defined as above. Every derivative of a (first) return generating function is a
positive increasing function of z ∈ [0, 1[ since the power series have no negative coefficients.
It is easy to verify that the function KG1,G2 has the same property. Therefore we get by
differentiating (20) n times

P
(n)
G1

(z) =
n∑

i=0

(
n

i

) ∑
ω: FR on G2

K
(i)
G1,G2

(z;ω)WG2(ω)(z|ω|)(n−i)

�
∑

ω: FR on G2

KG1,G2(z;ω)WG2(ω)(z|ω|)(n)

+ n
∑

ω: FR on G2

K ′
G1,G2

(z;ω)WG2(ω)(z|ω|)(n−1)

5
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�
∑

ω: FR on G2

KG1,G2(z;ω)WG2(ω)(z|ω|)(n)

+
∑

ω: FR on G2

K ′
G1,G2

(z;ω)WG2(ω)(z|ω|)(n−1)

= H ′
G1,G2

(z; n). (24)

With the same argument as in the proof of lemma 1 it holds that HG1,G2(z; n) � P
(n−1)
G2

(z)

with equality when z = 1, since all the F(i)’s are recurrent and because P
(n−1)
G2

(z) and therefore

also HG1,G2(z; n) are continuous on [0, 1]. Since HG1,G2(z; n) and P
(n−1)
G2

(z) are positive and
increasing functions of z, we find that

HG1,G2(1; n) − HG1,G2(z; n)

P
(n−1)
G2

(1) − P
(n−1)
G2

(z)
� 1. (25)

By a generalized mean-value theorem there exists a ξ ∈]z, 1[ such that

HG1,G2(1; n) − HG1,G2(z; n)

P
(n−1)
G2

(1) − P
(n−1)
G2

(z)
= H ′

G1,G2
(ξ ; n)

P
(n)
G2

(ξ)
. (26)

In view of (24) the lemma follows. �

Theorem 1. Assume that all the F(i)’s are recurrent, and that G1 and G2 have spectral
dimensions ds1 and ds2 respectively. If G2 is recurrent then G1 is recurrent and ds1 � ds2 . If
G2 is transient then G1 is transient and ds1 � ds2 .

Proof. Since all the F(i)’s are recurrent, we have PG1(1) = PG2(1) and therefore if G2 is
transient/recurrent then so is G1. First assume that G2 is recurrent. Then by using lemma 1
and equations (7)–(9), we find that for any ε > 0 there exist positive constants c1 and c2 which
may depend on ε such that

c1(1 − z)ds1 /2−1+ε � QG1(z) � QG2(z) � c2(1 − z)ds2 /2−1−ε (27)

for z close to 1. If ds1 �= ds2 , we choose ε < 1
4 |ds2 − ds1 | and send z → 1 to conclude that

ds1 > ds2 . When G2 is transient we use lemma 2 and similar arguments as above to show that
ds1 � ds2 . �

4. The spectral dimension

The d-brush where every bristle is N∞ we call the full d-brush and denote it by ∗d. We can
relate the generating function of the full d-brush to the generating functions of Z

d and N∞.
We use the same argument as in the proof of lemma 1. Replacing all the graphs F(i) with N∞
and noting that the order of every point in Z

d is 1/2d, we get

P∗d(x) =
(

1 +
1 − P∞(x)

2d

)
P

Z
d (xren(x)), (28)

where xren is defined by√
1 − xren =

√
1 − x

1 + 1−P∞(x)

2d

. (29)

We see that xren = √
x/d +O(x). By differentiating (28) once and comparing with (8) we find

the spectral dimension of the full brush

d∗ =
{

d
2 + 1 if 1 � d � 4

3 if d � 4.
(30)

6
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If we replace the infinite bristles with finite ones, all of which have the same length, then with
the same calculation we see that the spectral dimension remains equal to d. These are special
cases of a more general result obtained in [12] for so-called bundled structures. There, the
base Z

d can be replaced by any graph B and the infinite bristle (fiber) can also be replaced by
any fixed graph F.

Using the above calculation and theorem 1, we can find bounds on the spectral dimensions
of fixed and random d-brushes. Any fixed d-brush B can be constructed from Z

d by attaching
(recurrent) bristles to it, and the full d-brush can be constructed from B by attaching (recurrent)
bristles to it. Therefore, by theorem 1, the spectral dimension of any fixed d-brush, if it exists,
lies between d and d∗. This also holds for random brushes as is clear from equations (35)
and (38) below and the proof of theorem 1. The spectral dimension for any fixed or random
d-brush, if it exists, therefore obeys inequalities (4).

The spectral dimension of random 2-brushes always equals 2. Indeed it follows from
the fact that Q

Z
2(x) is asymptotic to |ln(x)| as x → 0 and lemma 1 that there exist positive

constants c1 and c2 such that

c1|ln(x)| � Q(x) � c2|ln(x)| (31)

when x is small enough. This is a stronger condition on the asymptotic behavior of P(x) than
P(x) ∼ 1 as x → 0.

It is interesting that for d � 4 the lower bound on the spectral dimension always equals
3. In fact it is easy to see that attaching a single infinite bristle to Z

d with d � 4 reduces the
spectral dimension to 3. We can show this by attaching an infinite bristle to the root of Z

d

since the spectral dimension is independent of the starting site of the random walks. Let us
call the resulting brush ⊥d. The first return generating function is simply

P⊥d(x) = 2d

2d + 1
P

Z
d (x) +

1

2d + 1
P∞(x). (32)

Since d � 4, equation (8) shows that Q′
Z

d (x) diverges slower than any negative power of x as
x → 0 but Q′

∞(x) ∼ x−1/2. Therefore by differentiating (32) we get

Q′
⊥d(x) ∼ x−1/2 (33)

as x → 0 and therefore by (8) the spectral dimension equals 3. It follows that if a random
d-brush with d � 4 has a nonzero probability of having one or more infinite bristles its spectral
dimension equals 3.

We find with similar arguments that adding a single (or finitely many) infinite bristles to
Z

3 gives the spectral dimension 3. However, if we add infinitely many bristles, the spectral
dimension of Z

3 can be lowered as is seen e.g. in the case of the full 3-brush.
We now use the notation of section 3 and consider the case when G2 = Z

d and instead
of having a fixed G1 we take a random d-brush. We would like to get bounds for the spectral
dimension of random brushes similar to those in theorem 1. First we note that by lemma 1,
we have for any B ∈ Bd that

P∗d(x) � PB(x) � P
Z

d (x) (34)

and averaging we get

P∗d(x) � P(x) � P
Z

d (x). (35)

In order to generalize lemma 2 to random brushes, we consider the case d > 2 and define the
functions

Ha(x; n) = 〈HB,Zd (x; n)〉π and Hb(x) = 〈H∗d,B(x; 1)〉π , (36)

7
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where n = [
d−1

2

]
is the smallest positive integer for which P

(n)

Z
d (x) diverges as x → 0. With

the same calculation as in (24), we get

H
′
a(x)

P
(n)

(x)
� 1 and

H
′
b(x)

P ′
∗d(x)

� 1. (37)

We clearly have (−1)n−1Ha(x) � (−1)n−1P
(n−1)

Z
d (x) and Hb(x) � P(x) both with equality

when x = 0. Since the functions (−1)n−1Ha(x), (−1)n−1P
(n−1)

Z
d (x),Hb(x) and P(x) are all

decreasing functions of x, we get with the same argument as in the proof of lemma 2 that for
a given x ∈]0, 1[ there exists a ξ ∈]0, x[ such that

1 � P
(n)

(ξ)

P
(n)

Z
d (ξ)

and 1 � P ′
∗d(ξ)

P
′
(ξ)

. (38)

This extends theorem 1 to random brushes and establishes bounds (4).

5. Mean field theory

It is an obvious question to ask whether the full range of spectral dimensions allowed by (4)
is realized for some random brushes. We do not have an answer to this question. However, in
[9] the spectral dimensions for different classes of random combs were calculated exactly and
shown to take the same values as in mean field theory [13]. By mean field theory we mean
that the walk on the base (spine in the case of combs) always sees a new bristle drawn from
the probability distribution µ whenever it is located at the root of a bristle. Since mean field
theory is exact in one dimension, we find it likely that it is also exact in higher dimensions
where the walks are less likely to visit the same points on the base often. Mean field theory
allows us to evaluate the spectral dimension very easily as we now explain.

The ensemble average of the function KG1,G2 defined in (21) can be written as

〈KB,Zd (x;ω)〉π =
〈 |ω|−1∏

t=1

2d

2d + 1 − PF(ωt )(x)

〉
π

m.f.t.=
(〈

2d

2d + 1 − Pl(x)

〉
µ

)|ω|−1

, (39)

where the second equality is the mean field theory approximation. The mean field theory
approximation to the first return generating function is

P m.f.t.,d(x) =
〈

2d

2d + 1 − Pl(x)

〉−1

µ

P
Z

d (xren(x)), (40)

where xren(x) is defined through√
1 − xren(x) =

〈
2d

2d + 1 − Pl(x)

〉
µ

√
1 − x. (41)

Now choose µ(l) = cal
−a with a > 1. We understand the cases d = 1 and d = 2. Therefore

consider the case d � 3. It is straightforward to calculate the asymptotic behavior of the
following derivatives:〈

P
(n)
l (x)

〉
µ

∼ xa/2−n for n � 1, (42)

xren(x) ∼
{
xa/2

x,
x ′

ren(x) ∼
{
xa/2−1 if 1 < a � 2
1 if a > 2

(43)

8
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and

x(n)
ren (x) ∼ xa/2−n for n � 2 (44)

when x → 0. We also see that the leading behavior of the nth derivative of (40) is

P
(n)

m.f.t.,d(x) ∼ 〈
P

(n)
l (x)

〉
µ

+ P
(n)

Z
d (xren(x))(x ′

ren(x))n. (45)

First consider the case d = 3, when we only have to look at the first derivative. Then
P ′

Z
3(x) ∼ x−1/2 as x → 0 and therefore

P
′
m.f.t.,3(x) ∼

{
xa/4−1 if 1 < a � 2
x−1/2 if a > 2

(46)

which gives

ds =
⎧⎨
⎩

a

2
+ 2 if 1 < a � 2

3 if a > 2.

(47)

Doing the same for d � 4, we get the result

ds =
{
a + 2 if 1 < a � d − 2
d if a > d − 2.

(48)

It is easy to see that putting a single bristle on Z
d with probability distribution µ for d � 4

gives the same spectral dimension as mean field theory.
Now consider the random brush defined by µ(∞) = p > 0 and µ(0) = 1 − p. It was

shown in [9] that for d = 1 the spectral dimension of this random brush equals the spectral
dimension of the full brush. The same is of course true for d = 2 and as well for d � 4, as was
noted in the discussion below (33). Using mean field theory and similar analysis as above, we
find that in any dimension the resulting random brush has also the same spectral dimension as
the full brush. It is therefore clear that for this class of random brushes, if d �= 3, mean field
theory gives the correct spectral dimension. Settling the case d = 3 would require some extra
work.

6. Discussion

We have established bounds on the spectral dimensions of random graphs constructed by
attaching linear graphs to Z

d and argued that mean field theory is likely to give the right value
for the spectral dimension. The main monotonicity results are in fact valid for a much larger
class of graphs as explained in section 3; the base can be arbitrary and the bristles need only
be recurrent graphs.

It is clear that the Hausdorff dimension of the full d-brush is dH = d + 1 so inequality (3)
gives us the bounds

d + 1 � ds � 2d

d + 1
(49)

which is weaker than (4). It is straightforward to calculate the Hausdorff dimension of random
brushes. If the lengths of the bristles are distributed by µ(l) = cal

−a then

dH =
{
d if a � 2
d + 2 − a if 1 < a � 2.

(50)

If there is an infinite bristle with nonzero probability, then dH = d + 1. In both cases, we see
that relation (3) holds for dH and ds , where ds is calculated by mean field theory.
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While our random brushes do contain loops, they are all on the base which is nonrandom
and therefore do not yield much insight into how one might hope to bound or evaluate the
spectral dimension of random graphs that contain loops like e.g. random surfaces. The only
rigorous result that we are aware of on the spectral dimension of graphs with genuinely random
loops is [14], where it is shown that in a particular model of random planar triangulation the
graphs are recurrent with probability 1, so their spectral dimension is �2. From numerical
simulations it is known that the spectral dimension of two-dimensional random triangulations
is 2 [5]. Four-dimensional triangulations exhibit very interesting behavior. It is found
numerically that the spectral dimension is 2 on short scales, while it is 4 on large scales
[6, 7]. It remains to understand this analytically.

In recent years much work has been done on the structure and scaling properties of
polymers with a comb-like structure, see e.g. [15, 16]. It would be interesting to relate the
scaling properties of such polymers to the spectral dimension.
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